
Расчет болтовых и сварных соединений

- 1. Расчет болтовых соединений с поперечной нагрузкой
- 1.1. Болт установлен в отверстия деталей без зазора. Болт работает на срез и смятие.

Болт цилиндрический

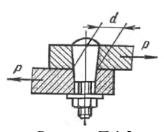


Рисунок П 1.2 Болт конусный

На срез болт рассчитывают по формуле:

$$\pi \left(d/10\right)^2 \left[au_{cp} \; \right] / \, 4 \geq P$$
, откуда $d \geq \; 10 \sqrt{\, 4P/\, \pi} \; \left[au_{cp} \; \right]$,

где Р – сила, действующая поперек болта, кгс;

 $[\tau_{cp}]$ – допускаемое напряжение на срез, кгс/см²;

d – диаметр посадочной поверхности болта, мм.

На смятие болт рассчитывают по формуле:

(d h [
$$\sigma_{_{CM}}$$
])/100 \geq P, откуда h \geq 100P / d [$\sigma_{_{CM}}$] ,

где h – высота участка смятия, мм;

 $[\sigma_{cm}]$ - допускаемое напряжение на смятие, кгс/см².

1.2. Болт установлен в отверстия деталей с зазором. Затяжкой болта обеспечивают достаточную силу трения между деталями для предупреждения их сдвига и перекоса болта.

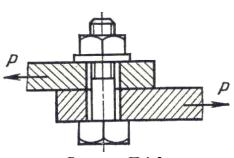


Рисунок П 1.3

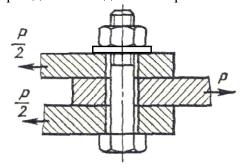


Рисунок П 1.4

Q = P / f i

где і – число стыков

Болт рассчитывают на усилие затяжки **Q** по формулам:

$$Q = P / f = \pi (d_1/10)^2 [\sigma_p] / 4,$$

где f – коэффициент трения между соединяемыми деталями; принимается в

соответствии с п. 11.3.1 настоящей главы;

 d_1 - внутренний диаметр резьбы болта, мм;

 $\left[\sigma_{p}\right]$ — допускаемое напряжение при растяжении, кгс/см²

- 2. Расчет сварных соединений
- 2.1. Стыковое соединение с прямым швом.

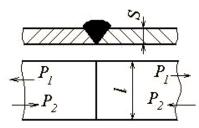
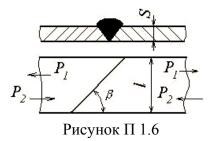


Рисунок П 1.5

Допускаемое усилие для соединения при:


- растяжении $P_1 = [\sigma]_p 1 S/100$ (кгс);
- сжатии $P_2 = [\sigma] l S/100$ (кгс),

где $[\sigma_p]$, $[\sigma_{c\kappa}]$ — допускаемые напряжения для сварного шва соответственно при растяжении и сжатии, кгс/см²;

l, S - ширина и толщина соединяемых деталей, мм.

При расчете прочности все виды подготовки кромок в стыковых соединениях принимают равноценными.

2.2. Стыковое соединение с косым швом.

Допускаемое усилие для соединения при:

- растяжении $P_1 = [\sigma_p] \, l \, S/100 \sin \beta$ (кгс);
- сжатии $P_2 = [\sigma'_{cж}] \, l \, S / \, 100 \, sin \, \beta$ (кгс),

при β=45° соединение равнопрочно целому сечению.

2.3. Нахлесточное соединение.

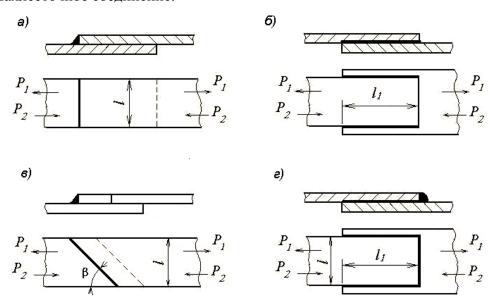


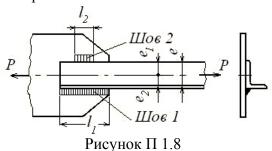
Рисунок П 1.7

Соединения выполняют угловым швом. В зависимости от направления шва относительно направления действующих сил угловые швы называют лобовыми (рисунок Π 1.7 а), фланговыми (рисунок Π 1.7 б), косыми (рисунок Π 1.7 в) и комбинированными (рисунок Π 1.7 г).

Максимальную длину лобового и косого швов не ограничивают. Длину фланговых швов следует принимать не более 60К, где K — величина катета шва (мм). Минимальная длина углового шва 30 мм; при меньшей длине дефекты в начале и конце шва значительно снижают его прочность. Минимальный катет углового шва K_{min} принимают равным 3 мм, если толщина металла $S \ge 3$ мм.

Допускаемое усилие для соединения

$$P_1 = P_2 = 0.7 [\tau]_{cp} KL/100 (kgc),$$


где $[\tau]_{cp}$] — допускаемое напряжение для сварного шва на срез, кгс/см²;

K – катет шва, мм;

L – периметр угловых швов, мм:

- для лобовых швов L=l;
- для фланговых швов L=2l₁;
- для косых швов L=l/ sin β;
- для комбинированных швов **L=2l₁+l.**

2.4. Соединение несимметричных элементов.

Усилия, передаваемые на швы 1 и 2, находят из уравнения статики:

$$P_1 = P e_1/e$$
; $P_2 = P e_2/e$.

Необходимая длина швов:

 $l_1 = P_1/0,\!007 \ [\tau \hat{\ }_{cp} \] \ K \ \ (\text{mm}); \qquad l_2 = P_2/0,\!007 \ [\tau \hat{\ }_{cp} \] \ K \ (\text{mm}),$

где [τ ' ср] — допускаемое напряжение для сварного шва на срез, кгс/см²; **К** — катет шва, мм. Допускается увеличение l_2 до размера l_1 .

2.5. Тавровое соединение, обеспечивающее лучшую передачу усилий.

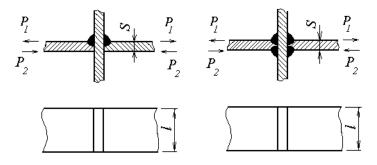


Рисунок П 1.9

Допускаемое усилие при:

- растяжении $P_1 = [\sigma'_p] l S/100$ (кгс);
- сжатии $P_2 = [\sigma] I S/100$ (кгс),

где $[\sigma]_p$, $[\sigma]_{cж}$ — допускаемые напряжения для сварного шва соответственно при растяжении, сжатии, кгс/см²;

l, S - ширина и толщина пристыкованных деталей, мм.

2.6. Допускаемые напряжения для сварных швов.

Допускаемые напряжения для сварных швов принимают в соответствии с таблицей П1.1 в зависимости от допускаемых напряжений, принятых для основного металла.

Допускаемые напряжения для сварных швов

Таблица П 1.1

Channa	Для стыковых соединений		При срезе
Сварка	при растяжении [σ` р]	при сжатии [о` _{сж}]	[τ` _{cp}]
Ручная электродами Э42	0,9 [σ _p]	$[\sigma_p]$	0,6 [σ _p]
Ручная электродами Э42А	$[\sigma_{p}]$	$[\sigma_{p}]$	$0,65 [\sigma_{\rm p}]$

 $^{[\}sigma_p]$ — допускаемое растяжение при растяжении для основного металла