Воскресенье, 17.11.2024, 00:15
Приветствую Вас Гость | RSS

Шпаргалка

Шпоры для школьников и студентов

Ответы на экзамен, зачет, коллоквиум, ЕГЭ, ГИА и многое другое

Образование и наука

ответы, шпоры, астрономия, биология, география, информатика, история, культурология, литература, математика, материаловедение, машиностроение, медицина
обществознание и политология, педагогика, психология, социология, химия, физика, филология, философия, экология, экономика, электротехника, энергетика, юриспруденция

Скачать шпаргалки

Шпаргалка дифференциальные уравнения и ряды

Главная » Файлы » Технические науки » Математика

Шпаргалка дифференциальные уравнения и ряды

Для скачивания материала Вам нужно зарегистрироваться

[ Скачать шпаргалку(142.7 Kb) ]
18.08.2015, 12:19

Задачи, приводящие к обыкновенным ДУ, основные определения.
Задача Коши, формулировка теоремы существования и единственности ее решения. Геометрический смысл ДУ 1-го порядка, поле направлений, метод изоклин.
ДУ 1-го порядка с разделяющимися переменными. Однородные ДУ 1-го порядка.
Линейные ДУ 1-го порядка. Уравнение Бернулли.
ДУ в полных дифференциалах. ДУ 1-го порядка, неразрешенные относительно производной.
ДУ высших порядков. Задача Коши, формулировка теоремы существования и единственности ее решения. ДУ, допускающее понижение порядка.
Линейные однородные (ЛО) ДУ n-го порядка.
Линейная зависимость и линейная независимость системы функций. Определитель Вронского.
Теоремы о необходимых и достаточных условиях линейной зависимости и линейной независимости решений ЛОДУ.
Фундаментальная система решений ЛОДУ. Структура общего решения ЛОДУ.
ЛОДУ n-го порядка с постоянными коэффициентами.
Линейные однородные (ЛО) ДУ n-го порядка. Структура общего решения ЛНДУ.
Метод вариации постоянных для решения ЛНДУ.
ЛНДУ с постоянными коэффициентами и специальной правой частью.
Системы дифференциальных уравнений. Основные понятия. Задача Коши для нормальных систем. Линейные системы ДУ. Матричная задача.
Структура общего решения линейных систем ДУ.
Линейные однородные и неоднородные системы ДУ с постоянными коэффициентами.
Числовые ряды. Основные свойства.
Необходимые признаки сходимости ряда.
Признак сравнения.
Признак Даламбера для рядов с неотрицательными членами.
Признак Коши для рядов с неотрицательными членами.
Интегральный признак Коши.
Числовые ряды с произвольными членами. Теорема Лейбница для знакочередующихся рядов. Оценка остатка ряда.
Необходимое и достаточное условие сходимости рядов с комплексными членами.
Абсолютная и условная сходимость. Свойства абсолютно сходящихся рядов (б/д).
Признаки Даламбера и Коши для рядов с произвольными членами.
Функциональные последовательности и ряды. Область сходимости.
Равномерная сходимость. Критерий Коши равномерной сходимости.
Признак Вейерштрасса.
Свойства равномерно сходящихся последовательностей и рядов.
Степенные ряды. Теорема Абеля. Свойства степенных рядов в действительной области.
Ряды Тейлора и Маклорена.
Разложение в ряд Маклорена функций ех, sin х, cos х, ln(l+x), (1 + х)а.
Приложение степенных рядов для решения задачи Коши для ДУ n-го порядка.

Категория: Математика | Добавил: kkent | Теги: шпаргалка, ряды, Дифференциальные, уравнения, Математика
Просмотров: 4035 | Загрузок: 1183 | Рейтинг: 0.0/0
Всего комментариев: 0
avatar
Вход на сайт
Поиск
мы в соц.сетях
Статистика
Рейтинг@Mail.ru
Онлайн всего: 10
Гостей: 10
Пользователей: 0
Облако

Шпаргалка © 2024
uCoz